

Problem detection in real-time

systems by trace analysis
Mathieu Côté

Laboratoire DORSAL

mathieu.cote@polymtl.ca

13 mai 2015

Outline

● Introduction
● Literature review
● Modeling
● Views
● Results
● Conclusion

Introduction : problematic
Music player trace in Trace Compass

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 1 : Multiple executions of an audio player

Introduction : problematic

Advantages of tracing real-time systems
● Low overhead
● Low jitter
● Access to specific information (priority, scheduling policy, etc.)

What is missing?
● Real-time specific user tools
● Show useful data

Introduction
Literature
Modeling
Views
Results
Conclusion

Introduction : goals

1. Develop a model to define real-time task executions in a trace
2. Identify common problems in real-time systems and useful

information to analyze them
3. Develop a method to analyze the trace segment corresponding to

an execution to identify if the execution presents a problem

Introduction
Literature
Modeling
Views
Results
Conclusion

Introduction : definition

● Real-time task : execution time, deadline, period (optional)
● Execution : periodic, sporadic
● Hard/soft real-time

PREEMPT_RT
● Priority inheritance for mutex in kernel
● Reduce non-preemptive sections in kernel

Introduction
Literature
Modeling
Views
Results
Conclusion

Scheduling policies

● Normal
○ SCHED_OTHER : standard
○ SCHED_BATCH
○ SCHED_IDLE

● Real-time
○ SCHED_FIFO
○ SCHED_RR : with time quantum
○ SCHED_DEADLINE : Global Earliest Deadline First, highest

user controllable priority

Introduction
Literature
Modeling
Views
Results
Conclusion

Scheduling policies

● SCHED_FIFO and SCHED_RR
○ A deadline can be missed even

if there was a valid scheduling
to respect all deadlines

● SCHED_DEADLINE
○ No deadline will be missed if

there is a valid scheduling
Figure 2 : Deadline missed

Introduction
Literature
Modeling
Views
Results
Conclusion

Scheduling policies

● SCHED_FIFO and SCHED_RR
○ The highest priority task will always

execute if it is able to
● SCHED_DEADLINE

○ If there is a missed deadline, it can be
on a highest priority task (for the
user, because there is no priority set) Figure 3 : Highest priority

Introduction
Literature
Modeling
Views
Results
Conclusion

Priority inversion

The high priority task is blocked by the low priority task that is
preempted because the medium priority task is running.

Figure 4 : Priority inversion

Introduction
Literature
Modeling
Views
Results
Conclusion

Priority inversion

Priority ceiling protocol
● Better if the high priority task accesses the resource more often

than the low priority task, because it is faster and has fewer context
switches, but it can give an unnecessary high priority to the lower
task

Figure 5 : Priority ceiling protocol

Introduction
Literature
Modeling
Views
Results
Conclusion

Priority inversion

Priority inheritance
● Better if the low priority task accesses the resource more often

Figure 6 : Priority inheritance

Introduction
Literature
Modeling
Views
Results
Conclusion

Literature review

Linux low-latency tracing for multicore hard real-time systems
(Beamonte, 2013)
● LTTng-UST modification to reduce the added latency
● Demonstrated low latency tracing with LTTng

Introduction
Literature
Modeling
Views
Results
Conclusion

Literature review
Real-time Linux analysis using low-impact tracer (Rajotte,
2014)
● Recreate the task states using kernel events
● Compare executions of a task
● Sort the executions by running time
● Limitations

○ Threads need to have different priorities
○ Model is fixed
○ Not working with SCHED_DEADLINE
○ Manual analysis to find problems
○ Problems when more than one processor Figure 7 : Original stackbars view

Introduction
Literature
Modeling
Views
Results
Conclusion

Modeling

Advantage of using only kernel events
● No need to modify the application source code to add tracepoints

manually

Introduction
Literature
Modeling
Views
Results
Conclusion

Modeling

● Identify executions automatically and then let the users choose
between some valid models
○ Define a support ratio
○ Find all event types that are more frequent than the ratio
○ Increase the episode sizes using the fact that the sub-episodes

must also be supported
○ Difficulties :

■ Using only event types
■ Execution time and memory usage
■ Many possible resulting models

Introduction
Literature
Modeling
Views
Results
Conclusion

Modeling : method
State machine
● User identifies :

○ an execution or
○ events that define the

start and the end
(name, parameters
with operations, etc.)

○ TIDs for start and end
○ Presets for common

cases

Figure 8 : Dialog to define model

Introduction
Literature
Modeling
Views
Results
Conclusion

Modeling : method
State machine
● Remove execution
● Add execution
● Define an execution as invalid and

recalculate
○ Will suggest some

modifications to the model
based on differences between
valid and invalid executions

○ The user can select the ones he
wants to apply Figure 9 : Dialog to select modifications to apply

Introduction
Literature
Modeling
Views
Results
Conclusion

Overview
1) Control Flow View

2) Define executions

3) Stackbars View
4) Critical Flow View with
CP Complement view

5) Other views

Views
Stackbars view

Figure 10 : Stackbars view

Introduction
Literature
Modeling
Views
Results
Conclusion

Views
● Supports

○ Thread pool
○ Nested executions

Figure 11 : Task on multiple threads

Figure 12 : Nested executions

Introduction
Literature
Modeling
Views
Results
Conclusion

Views
Time View
● View of duration by

starting timestamp
● Synced with other views

Figure 14 : Stackbars view

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 13 : Time view

Views
CP Complement View
● Show the priority of all running threads during preemption period

of any thread in the critical path

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 15 : CP Complement view Figure 16 : CP Complement view

Views
CP Complement View
● Detect priority inversion

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 17 : CP Complement view

Example
Find out why some executions take more time

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 19 : Normal executions

Figure 18 : Problematic executions

Figure 20 : Time View

Example
Normal execution

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 21 : CP Complement of a normal execution

Figure 22 : There was priority inheritance

Example
Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 23 : CP Complement of a problematic execution

Other results
Output the dependencies during an execution

● priority
● directly related option

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 24 : CP Complement in related mode

Other results
Extended comparison view

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 25 : Extended comparison view

Other results
Extended time view : queue

HRTimer

Introduction
Literature
Modeling
Views
Results
Conclusion

Figure 26 : Extended time view

Other results
● Deadline analysis

○ Tell which executions missed their deadlines
○ User input

Figure 27 : Deadline

Introduction
Literature
Modeling
Views
Results
Conclusion

Conclusion

● Future work
○ Modeling

■ Instrument complex real-time application in user-space
and for each task, validate if it is possible to model only
with kernel events

○ Analysis
■ Validate with real bugs
■ Add new analysis

● Questions?

Introduction
Literature
Modeling
Views
Results
Conclusion

